虹膜识别技术在过去几十年中吸引了日益增长的兴趣,我们目睹了从研究实验室迁移到现实世界应用的迁移。该技术的部署提出了关于与这些系统相关的主要漏洞和安全威胁的问题。在这些威胁中,介绍攻击突出了一些最相关和研究的。呈现攻击可以被定义为人类特征或工件的呈现直接到试图干扰其正常操作的生物识别系统的捕获设备。在虹膜的情况下,这些攻击包括使用真正的虹膜以及具有不同级别的复杂程度的工件,例如照片或视频。本章介绍了已开发的虹膜演示攻击检测(PAD)方法,以降低呈现攻击所带来的风险。首先,我们总结了最受欢迎的攻击类型,包括地址的主要挑战。其次,我们提出了一个介绍攻击检测方法的分类,作为这一非常活跃的研究区域的简要介绍。最后,我们讨论了这些方法根据实际应用中最重要的情况识别虹膜识别系统。
translated by 谷歌翻译
自2020年初以来,COVID-19的大流行对日常生活的许多方面产生了相当大的影响。在全球范围内已经采取了一系列不同的措施,以降低新感染的速度并管理国家卫生服务的压力。主要策略是通过优先考虑远程工作和教育来减少聚会和传播的潜力。当不可避免的聚会时,增强的手卫生和面膜的使用减少了病原体的扩散。这些特殊的措施提出了可靠的生物识别识别的挑战,例如用于面部,语音和手工生物识别技术。同时,新的挑战创造了新的机会和研究方向,例如对无约束的虹膜或眼周识别,基于无触摸的指纹和基于静脉的身份验证以及生物特征特征进行疾病检测的重新兴趣。本文概述了为解决这些挑战和新兴机会而进行的研究。
translated by 谷歌翻译
Data scarcity is one of the main issues with the end-to-end approach for Speech Translation, as compared to the cascaded one. Although most data resources for Speech Translation are originally document-level, they offer a sentence-level view, which can be directly used during training. But this sentence-level view is single and static, potentially limiting the utility of the data. Our proposed data augmentation method SegAugment challenges this idea and aims to increase data availability by providing multiple alternative sentence-level views of a dataset. Our method heavily relies on an Audio Segmentation system to re-segment the speech of each document, after which we obtain the target text with alignment methods. The Audio Segmentation system can be parameterized with different length constraints, thus giving us access to multiple and diverse sentence-level views for each document. Experiments in MuST-C show consistent gains across 8 language pairs, with an average increase of 2.2 BLEU points, and up to 4.7 BLEU for lower-resource scenarios in mTEDx. Additionally, we find that SegAugment is also applicable to purely sentence-level data, as in CoVoST, and that it enables Speech Translation models to completely close the gap between the gold and automatic segmentation at inference time.
translated by 谷歌翻译
While the problem of hallucinations in neural machine translation has long been recognized, so far the progress on its alleviation is very little. Indeed, recently it turned out that without artificially encouraging models to hallucinate, previously existing methods fall short and even the standard sequence log-probability is more informative. It means that characteristics internal to the model can give much more information than we expect, and before using external models and measures, we first need to ask: how far can we go if we use nothing but the translation model itself ? We propose to use a method that evaluates the percentage of the source contribution to a generated translation. Intuitively, hallucinations are translations "detached" from the source, hence they can be identified by low source contribution. This method improves detection accuracy for the most severe hallucinations by a factor of 2 and is able to alleviate hallucinations at test time on par with the previous best approach that relies on external models. Next, if we move away from internal model characteristics and allow external tools, we show that using sentence similarity from cross-lingual embeddings further improves these results.
translated by 谷歌翻译
End-to-End speech-to-speech translation (S2ST) is generally evaluated with text-based metrics. This means that generated speech has to be automatically transcribed, making the evaluation dependent on the availability and quality of automatic speech recognition (ASR) systems. In this paper, we propose a text-free evaluation metric for end-to-end S2ST, named BLASER, to avoid the dependency on ASR systems. BLASER leverages a multilingual multimodal encoder to directly encode the speech segments for source input, translation output and reference into a shared embedding space and computes a score of the translation quality that can be used as a proxy to human evaluation. To evaluate our approach, we construct training and evaluation sets from more than 40k human annotations covering seven language directions. The best results of BLASER are achieved by training with supervision from human rating scores. We show that when evaluated at the sentence level, BLASER correlates significantly better with human judgment compared to ASR-dependent metrics including ASR-SENTBLEU in all translation directions and ASR-COMET in five of them. Our analysis shows combining speech and text as inputs to BLASER does not increase the correlation with human scores, but best correlations are achieved when using speech, which motivates the goal of our research. Moreover, we show that using ASR for references is detrimental for text-based metrics.
translated by 谷歌翻译
This report summarises the outcomes of a systematic literature search to identify Bayesian network models used to support decision making in healthcare. After describing the search methodology, the selected research papers are briefly reviewed, with the view to identify publicly available models and datasets that are well suited to analysis using the causal interventional analysis software tool developed in Wang B, Lyle C, Kwiatkowska M (2021). Finally, an experimental evaluation of applying the software on a selection of models is carried out and preliminary results are reported.
translated by 谷歌翻译
We consider the problem of decision-making under uncertainty in an environment with safety constraints. Many business and industrial applications rely on real-time optimization with changing inputs to improve key performance indicators. In the case of unknown environmental characteristics, real-time optimization becomes challenging, particularly for the satisfaction of safety constraints. We propose the ARTEO algorithm, where we cast multi-armed bandits as a mathematical programming problem subject to safety constraints and learn the environmental characteristics through changes in optimization inputs and through exploration. We quantify the uncertainty in unknown characteristics by using Gaussian processes and incorporate it into the utility function as a contribution which drives exploration. We adaptively control the size of this contribution using a heuristic in accordance with the requirements of the environment. We guarantee the safety of our algorithm with a high probability through confidence bounds constructed under the regularity assumptions of Gaussian processes. Compared to existing safe-learning approaches, our algorithm does not require an exclusive exploration phase and follows the optimization goals even in the explored points, which makes it suitable for safety-critical systems. We demonstrate the safety and efficiency of our approach with two experiments: an industrial process and an online bid optimization benchmark problem.
translated by 谷歌翻译
In this paper, negatively inclined buoyant jets, which appear during the discharge of wastewater from processes such as desalination, are observed. To minimize harmful effects and assess environmental impact, a detailed numerical investigation is necessary. The selection of appropriate geometry and working conditions for minimizing such effects often requires numerous experiments and numerical simulations. For this reason, the application of machine learning models is proposed. Several models including Support Vector Regression, Artificial Neural Networks, Random Forests, XGBoost, CatBoost and LightGBM were trained. The dataset was built with numerous OpenFOAM simulations, which were validated by experimental data from previous research. The best prediction was obtained by Artificial Neural Network with an average of R2 0.98 and RMSE 0.28. In order to understand the working of the machine learning model and the influence of all parameters on the geometrical characteristics of inclined buoyant jets, the SHAP feature interpretation method was used.
translated by 谷歌翻译
Large language models (LLMs) have been reported to have strong performance on natural language processing tasks. However, performance metrics such as accuracy do not measure the quality of the model in terms of its ability to robustly represent complex linguistic structure. In this work, we propose a framework to evaluate the robustness of linguistic representations using probing tasks. We leverage recent advances in extracting emergent linguistic constructs from LLMs and apply syntax-preserving perturbations to test the stability of these constructs in order to better understand the representations learned by LLMs. Empirically, we study the performance of four LLMs across six different corpora on the proposed robustness measures. We provide evidence that context-free representation (e.g., GloVe) are in some cases competitive with context-dependent representations from modern LLMs (e.g., BERT), yet equally brittle to syntax-preserving manipulations. Emergent syntactic representations in neural networks are brittle, thus our work poses the attention on the risk of comparing such structures to those that are object of a long lasting debate in linguistics.
translated by 谷歌翻译
In recent years there has been growing attention to interpretable machine learning models which can give explanatory insights on their behavior. Thanks to their interpretability, decision trees have been intensively studied for classification tasks, and due to the remarkable advances in mixed-integer programming (MIP), various approaches have been proposed to formulate the problem of training an Optimal Classification Tree (OCT) as a MIP model. We present a novel mixed-integer quadratic formulation for the OCT problem, which exploits the generalization capabilities of Support Vector Machines for binary classification. Our model, denoted as Margin Optimal Classification Tree (MARGOT), encompasses the use of maximum margin multivariate hyperplanes nested in a binary tree structure. To enhance the interpretability of our approach, we analyse two alternative versions of MARGOT, which include feature selection constraints inducing local sparsity of the hyperplanes. First, MARGOT has been tested on non-linearly separable synthetic datasets in 2-dimensional feature space to provide a graphical representation of the maximum margin approach. Finally, the proposed models have been tested on benchmark datasets from the UCI repository. The MARGOT formulation turns out to be easier to solve than other OCT approaches, and the generated tree better generalizes on new observations. The two interpretable versions are effective in selecting the most relevant features and maintaining good prediction quality.
translated by 谷歌翻译